Class – X Subject – Mathematics Summative Assessment-I

M.M.80Time: 3Hours

Section-A

Choose the correct answer and write in your answer sheet

 $10 \times 1 = 10$

- $(1+3\sqrt{2})(1-3\sqrt{2})$ is Q.1
 - Negative Integer Irrational No. Positive integer b. d. None a.
- Sum of an irrational number and a rational number is always: Q.2 a.an irrational b.a rational c.an integer
- Which one is not polynomial. Q.3
 - x^3-3x^2+x+1 b. $\sqrt{5}x^2+x+1$ c. $8x^2+x+1$ d. All are polynomial
- Value of k for which the system kx+2y = 5, 3x+y = 1 has unique solution. Q.4
 - k=6 b. k=3 c. $k \ne 6$ d. both b & c
 - If $\tan^2 \theta + \frac{1}{\tan^2 \theta} = \sqrt{3}$ then value of $\tan^4 \theta + \frac{1}{\tan^4 \theta}$ is equal to
 - 3 b. 9 c. 2 d. none
- Trigonometric ratio whose value is can not greater than 1 Q.6
 - tanA b. cosA a.
- sinA
- d. both (b) and (c)
- Q.7 Ratio of areas of two similar triangles whose corresponding sides are 8 cm and 12cm is
 - a. $\frac{4}{0}$ b. $\frac{6}{9}$ c. $\frac{2}{3}$ d. $\frac{3}{2}$

Q.5

- QA and PB are perpendiculars to AB .If AQ = 10 PB = 6 and AB = 9 then PQ is

- 5.4 c. 15 d.
 - none
- Remainder when $3x^3+16x^2+21x+20$ is divided by x+4Q.9

10

- c. -10 c. 0
- d. none
- $\operatorname{Sec}^{\theta} (1-\sin^{\theta}) (\sec^{\theta} + \tan^{\theta})$ equals to Q.10
 - $\sec^2\theta + \tan^2\theta$) b. 1 c. -1

- none

cbsesmart.weebly.com A CBSE coaching for math and science

- Q.11 Consider the number 6ⁿ, Where n is a natural number. Check whether for any value 6ⁿ ends with the digit zero.
- Q.12 If α , β are zeroes of quadratic polynomial $kx^2 + 4x + 14$, find the value of k such that

$$(\alpha + \beta)^2 - 2\alpha\beta = 24$$

Q.13 Solve for x and y

$$\frac{x}{a} + \frac{y}{b} = 2$$
, $ax - by = a^2 - b^2$

- Q.14 If one diagonal of a trapezium divides the other diagional in ratio 1:2,Prove that one of the parallel side is double the other.
- Q.15 If A,B and C are interior angle of triangle ABC, then show that $\sin\left(\frac{B+C}{2}\right) = \cos\frac{A}{2}$
- Q.16 If $7 \sin^2 \theta + 3 \sin^2 \theta = 4$, then show that $\tan \theta = \frac{1}{\sqrt{3}}$
- Q.17 The following is the distribution of weight(in Kg.) of 40 persons.

Weight(in	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80
kg.)		196	00					
No.of	4	4	13	5	6	5	2	1
persons			7 1					

Construct a cumulative frequency distribution of less than type the above data.

Q.18 The weight of tea in 70 packets are shown in the following table:

Weight(in	200-201	201-202	202-203	203-204	204-205	205-206
kg)						
No.of	12	26	20	9	2	1
persons						

Section-C

- Q.19 Find the H.C.F. of 65 and 117 and express it in the form of 65m+117n.
- Q.20 Find the largest number that will divide 398,436 and 542 leaving remainder 7,11,15, respectively.
- Q.21 On dividing $x^3 + x^2 + x 2$ by a polynomial g(x), the quotient and remainder were $x^2 + 2x + 1$ and 2x 1 respectively. Find g(x).
- Q.22 α , β are the zeros of the quadratic polynomial $x^2 (k-1)x + 2(2k-1)$. Find the value of k if

$$\alpha + \beta = \frac{1}{2}\alpha\beta$$

cbsesmart.weebly.com A CBSE coaching for math and science

- Q.23 Prove that area of equilateral triangle described on the side of a square is half the area of equilateral triangle described on its diagonal.
- Q.24 Given \triangle ABC, $\angle A = 90^{\circ}$, and AD $^{\perp}$ BC, Prove that AD 2 =BD.CD
- Q.25 Evaluate:

$$\frac{\sec^2 \theta - \cot^2 (90 - \theta)}{5(\sin^2 52^\circ + \sin^2 38^\circ)} - \frac{3 \cdot \cot^2 60^\circ \cdot \cos ec^2 72^\circ \cdot \cos^2 18^\circ}{\cos ec^2 54^\circ - \tan^2 36^\circ}$$

Q.26 Prove that:

$$\frac{\cos^3\theta + \sin^3\theta}{\cos\theta + \sin\theta} + \frac{\cos^3\theta - \sin^3\theta}{\cos\theta - \sin\theta} = 2.$$

Q.27 The mean of following distribution is 53. Find the value of p.

Class	0-20	20-40	40-60	60-80	80-100
Frequency	12	15	32	P	13

Q.28 Find the median of following distribution:

Class	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	5	6	15	10	5	4	2	2

Section-D

- Q.29 Draw the graphs of the pair of linear equation x y + 2 = 0; 4x y 4 = 0. Calculate the area of the triangle formed by the lines so drawn and the x axis.
- Q.30 In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Prove the converse of it
- Using the above proved theorem. \triangle ABC is isosceles triangle with AC=BC. if AB²=2AC². Proved that ABC is a right angled triangle.
- Q.31 If α , β are the zeroes of polynomial $2x^2 + 5x = k$ and $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, find the value of k.
- Q.32 If $x = a \sin \theta$ and $y = b \tan \theta$ then Prove that $\frac{a^2}{x^2} \frac{b^2}{v^2} = 1$.
 - OR Show that $\frac{\cot A + \cos ecA 1}{\cot A \cos ecA + 1} = \frac{1 + \cos A}{\sin A}$
- Q.33 If $\sin A + \cos ecA = 3$, find the value of $\frac{\sin^4 A + 1}{\sin^2 A}$.
- Q.34 Draw the cumulative frequency curve of more than and less than type for the following distribution:

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	5	3	4	3	3	4	7	9	7	8